Although many studies have successfully applied transfer learning to medical image segmentation, very few of them have investigated the selection strategy when multiple source tasks are available for transfer. In this paper, we propose a prior knowledge guided and transferability based framework to select the best source tasks among a collection of brain image segmentation tasks, to improve the transfer learning performance on the given target task. The framework consists of modality analysis, RoI (region of interest) analysis, and transferability estimation, such that the source task selection can be refined step by step. Specifically, we adapt the state-of-the-art analytical transferability estimation metrics to medical image segmentation tasks and further show that their performance can be significantly boosted by filtering candidate source tasks based on modality and RoI characteristics. Our experiments on brain matter, brain tumor, and white matter hyperintensities segmentation datasets reveal that transferring from different tasks under the same modality is often more successful than transferring from the same task under different modalities. Furthermore, within the same modality, transferring from the source task that has stronger RoI shape similarity with the target task can significantly improve the final transfer performance. And such similarity can be captured using the Structural Similarity index in the label space.
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译
Out-of-Distribution (OOD) detection, i.e., identifying whether an input is sampled from a novel distribution other than the training distribution, is a critical task for safely deploying machine learning systems in the open world. Recently, post hoc detection utilizing pre-trained models has shown promising performance and can be scaled to large-scale problems. This advance raises a natural question: Can we leverage the diversity of multiple pre-trained models to improve the performance of post hoc detection methods? In this work, we propose a detection enhancement method by ensembling multiple detection decisions derived from a zoo of pre-trained models. Our approach uses the p-value instead of the commonly used hard threshold and leverages a fundamental framework of multiple hypothesis testing to control the true positive rate of In-Distribution (ID) data. We focus on the usage of model zoos and provide systematic empirical comparisons with current state-of-the-art methods on various OOD detection benchmarks. The proposed ensemble scheme shows consistent improvement compared to single-model detectors and significantly outperforms the current competitive methods. Our method substantially improves the relative performance by 65.40% and 26.96% on the CIFAR10 and ImageNet benchmarks.
translated by 谷歌翻译
Graph neural networks (GNNs) have received remarkable success in link prediction (GNNLP) tasks. Existing efforts first predefine the subgraph for the whole dataset and then apply GNNs to encode edge representations by leveraging the neighborhood structure induced by the fixed subgraph. The prominence of GNNLP methods significantly relies on the adhoc subgraph. Since node connectivity in real-world graphs is complex, one shared subgraph is limited for all edges. Thus, the choices of subgraphs should be personalized to different edges. However, performing personalized subgraph selection is nontrivial since the potential selection space grows exponentially to the scale of edges. Besides, the inference edges are not available during training in link prediction scenarios, so the selection process needs to be inductive. To bridge the gap, we introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges when performing GNNLP. PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently. Coupling GNNLP models with PS2, we suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs. Comprehensive experiments endorse the effectiveness of our proposed method across various GNNLP backbones (GCN, GraphSage, NGCF, LightGCN, and SEAL) and diverse benchmarks (Planetoid, OGB, and Recommendation datasets). Our code is publicly available at \url{https://github.com/qiaoyu-tan/PS2}
translated by 谷歌翻译
Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model's robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.
translated by 谷歌翻译
Recently, evolutionary multitasking (EMT) has been successfully used in the field of high-dimensional classification. However, the generation of multiple tasks in the existing EMT-based feature selection (FS) methods is relatively simple, using only the Relief-F method to collect related features with similar importance into one task, which cannot provide more diversified tasks for knowledge transfer. Thus, this paper devises a new EMT algorithm for FS in high-dimensional classification, which first adopts different filtering methods to produce multiple tasks and then modifies a competitive swarm optimizer to efficiently solve these related tasks via knowledge transfer. First, a diversified multiple task generation method is designed based on multiple filtering methods, which generates several relevant low-dimensional FS tasks by eliminating irrelevant features. In this way, useful knowledge for solving simple and relevant tasks can be transferred to simplify and speed up the solution of the original high-dimensional FS task. Then, a competitive swarm optimizer is modified to simultaneously solve these relevant FS tasks by transferring useful knowledge among them. Numerous empirical results demonstrate that the proposed EMT-based FS method can obtain a better feature subset than several state-of-the-art FS methods on eighteen high-dimensional datasets.
translated by 谷歌翻译
This paper proposes a deep recurrent Rotation Averaging Graph Optimizer (RAGO) for Multiple Rotation Averaging (MRA). Conventional optimization-based methods usually fail to produce accurate results due to corrupted and noisy relative measurements. Recent learning-based approaches regard MRA as a regression problem, while these methods are sensitive to initialization due to the gauge freedom problem. To handle these problems, we propose a learnable iterative graph optimizer minimizing a gauge-invariant cost function with an edge rectification strategy to mitigate the effect of inaccurate measurements. Our graph optimizer iteratively refines the global camera rotations by minimizing each node's single rotation objective function. Besides, our approach iteratively rectifies relative rotations to make them more consistent with the current camera orientations and observed relative rotations. Furthermore, we employ a gated recurrent unit to improve the result by tracing the temporal information of the cost graph. Our framework is a real-time learning-to-optimize rotation averaging graph optimizer with a tiny size deployed for real-world applications. RAGO outperforms previous traditional and deep methods on real-world and synthetic datasets. The code is available at https://github.com/sfu-gruvi-3dv/RAGO
translated by 谷歌翻译
Few-shot node classification is tasked to provide accurate predictions for nodes from novel classes with only few representative labeled nodes. This problem has drawn tremendous attention for its projection to prevailing real-world applications, such as product categorization for newly added commodity categories on an E-commerce platform with scarce records or diagnoses for rare diseases on a patient similarity graph. To tackle such challenging label scarcity issues in the non-Euclidean graph domain, meta-learning has become a successful and predominant paradigm. More recently, inspired by the development of graph self-supervised learning, transferring pretrained node embeddings for few-shot node classification could be a promising alternative to meta-learning but remains unexposed. In this work, we empirically demonstrate the potential of an alternative framework, \textit{Transductive Linear Probing}, that transfers pretrained node embeddings, which are learned from graph contrastive learning methods. We further extend the setting of few-shot node classification from standard fully supervised to a more realistic self-supervised setting, where meta-learning methods cannot be easily deployed due to the shortage of supervision from training classes. Surprisingly, even without any ground-truth labels, transductive linear probing with self-supervised graph contrastive pretraining can outperform the state-of-the-art fully supervised meta-learning based methods under the same protocol. We hope this work can shed new light on few-shot node classification problems and foster future research on learning from scarcely labeled instances on graphs.
translated by 谷歌翻译
Talking face generation aims at generating photo-realistic video portraits of a target person driven by input audio. Due to its nature of one-to-many mapping from the input audio to the output video (e.g., one speech content may have multiple feasible visual appearances), learning a deterministic mapping like previous works brings ambiguity during training, and thus causes inferior visual results. Although this one-to-many mapping could be alleviated in part by a two-stage framework (i.e., an audio-to-expression model followed by a neural-rendering model), it is still insufficient since the prediction is produced without enough information (e.g., emotions, wrinkles, etc.). In this paper, we propose MemFace to complement the missing information with an implicit memory and an explicit memory that follow the sense of the two stages respectively. More specifically, the implicit memory is employed in the audio-to-expression model to capture high-level semantics in the audio-expression shared space, while the explicit memory is employed in the neural-rendering model to help synthesize pixel-level details. Our experimental results show that our proposed MemFace surpasses all the state-of-the-art results across multiple scenarios consistently and significantly.
translated by 谷歌翻译
Existing approaches for vision-and-language navigation (VLN) are mainly based on cross-modal reasoning over discrete views. However, this scheme may hamper an agent's spatial and numerical reasoning because of incomplete objects within a single view and duplicate observations across views. A potential solution is mapping discrete views into a unified birds's-eye view, which can aggregate partial and duplicate observations. Existing metric maps could achieve this goal, but they suffer from less expressive semantics (e.g. usually predefined labels) and limited map size, which weakens an agent's language grounding and long-term planning ability. Inspired by the robotics community, we introduce hybrid topo-metric maps into VLN, where a topological map is used for long-term planning and a metric map for short-term reasoning. Beyond mapping with more expressive deep features, we further design a pre-training framework via the hybrid map to learn language-informed map representations, which enhances cross-modal grounding and facilitates the final language-guided navigation goal. Extensive experiments demonstrate the effectiveness of the map-based route for VLN, and the proposed method sets the new state-of-the-art on three VLN benchmarks.
translated by 谷歌翻译